2014-10-13

New paper: Can Government Be Self-Organized? A Mathematical Model of the Collective Social Organization of Ancient Teotihuacan, Central Mexico

Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city’s origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city’s hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city’s eventual disintegration.

Froese, T., Gershenson, C., and Manzanilla, L. R. (2014). Can government be self-organized? a mathematical model of the collective social organization of ancient teotihuacan, central mexico. PLoS ONE 9 (10) (10): e109966. http://www.plosone.org/article/info:doi/10.1371/journal.pone.0109966

2014-10-10

Review article published: The past, present, and future of artificial life

For millennia people have wondered what makes the living different from the non-living. Beginning in the mid-1980s, artificial life has studied living systems using a synthetic approach: build life in order to understand it better, be it by means of software, hardware, or wetware. This review provides a summary of the advances that led to the development of artificial life, its current research topics, and open problems and opportunities. We classify artificial life research into 14 themes: origins of life, autonomy, self-organization, adaptation (including evolution, development, and learning), ecology, artificial societies, behavior, computational biology, artificial chemistries, information, living technology, art, and philosophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging with other fields.

Aguilar W, SantamarĂ­a-Bonfil G, Froese T and Gershenson C (2014) The past, present, and future of artificial life. Front. Robot. AI 1:8. http://dx.doi.org/10.3389/frobt.2014.00008

2014-10-09

Paper published: Entropy Methods in Guided Self-Organisation

Self-organisation occurs in natural phenomena when a spontaneous increase inorder is produced by the interactions of elements of a complex system. Thermodynamically,this increase must be offset by production of entropy which, broadly speaking, can beunderstood as a decrease in order. Ideally, self-organisation can be used to guide the systemtowards a desired regime or state, while “exporting” the entropy to the system’s exterior. Thus, Guided Self-Organisation (GSO) attempts to harness the order-inducing potentialof self-organisation for specific purposes. Not surprisingly, general methods developed tostudy entropy can also be applied to guided self-organisation. This special issue covers a broad diversity of GSO approaches which can be classified in three categories: informationtheory, intelligent agents, and collective behavior. The proposals make another step towardsa unifying theory of GSO which promises to impact numerous research fields.

Entropy Methods in Guided Self-Organisation
Mikhail Prokopenko and Carlos Gershenson
Entropy 2014, 16(10), 5232-5241; doi:10.3390/e16105232
http://www.mdpi.com/1099-4300/16/10/5232

http://www.mdpi.com/journal/entropy/special_issues/self-organization

2014-10-06

New draft: Requisite Variety, Autopoiesis, and Self-organization

Ashby's law of requisite variety states that a controller must have at least as much variety (complexity) as the controlled. Maturana and Varela proposed autopoiesis (self-production) to define living systems. Living systems also require to fulfill the law of requisite variety. A measure of autopoiesis has been proposed as the ratio between the complexity of a system and the complexity of its environment. Self-organization can be used as a concept to guide the design of systems towards higher values of autopoiesis, with the potential of making technology more "living", i.e. adaptive and robust.

Requisite Variety, Autopoiesis, and Self-organization
Carlos Gershenson
Invited keynote at WOSC 2014
http://arxiv.org/abs/1409.7475